Embedded Systems __University of Maine

Lab 1: Pulse Width Modulation and Motor Control
Instructor: Prof. Yifeng Zhu
Fall 2019
Goals
1. Understand the clock tree of STM32F4 micro-controllers
2. Understand the concept of Pulse Width Modulation (PWM)
3. Learn how to configure and start a timer
4. Use PWM to control the motors
Pre-Lab Assignment
1. Read Textbook Chapter 15.3 PWM Output
2. Watch Youtube Tutorial
· Timer PWM output https://youtu.be/zkrVHIcLGww (17 minutes)
3. Complete the pin and timer configuration tables
Lab Demo
1. Initialize TIM4 to produce a PWM output:
a. Initialize GPIOB pin 6 to be configured as push-pull, NO PUPD, and low speed, in AF mode, using AF2. (The timer 4 PWM alternate function)
b. Configure timer 4 as done in the pre-lab assignment
2. Produce and measure a 500Hz output PWM signal on TIM4 Ch1
a. Modify the main function as described
b. Measure the output of TIM4 Ch1 using an oscilloscope to test said code
Post-Lab Assignment
1. Complete the post lab report and write your answer in readme.md
[bookmark: _cv117c43are7]STM32F4 Microcontroller
The STEVAL-FCU001V1 drone controller board uses an ARM Cortex-M4 (with DSP and FPU) microcontroller (STM32F401CCU6TR, UFQFPN48). The core runs at a frequency of up to 84 MHz.

Figure 1. ST drone kit

Figure 2. The STEVAL-FCU001V1 Drone controller
The key references for this microcontroller are listed below.
· RM0368 Reference manual STM32F401xB/C and STM32F401xD/E advanced Arm®-based 32-bit MCUs (link)
· STM32F401xB STM32F401xC Datasheet (link)
· STM32 Cortex®-M4 MCUs and MPUs programming manual (link)
Clock Configuration
There are two major types of clocks: system clock and peripheral clock.
· System Clock. To provide different tradeoffs between performance and energy-efficiency for different applications, the processor core can be driven by three different clock sources, including HSI (high-speed internal) oscillator clock, HSE (high-speed external) oscillator clock, and PLL clock. A faster clock provides better performance but usually consumes more power, which might not appropriate for battery-powered systems.
· Peripheral Clock. All peripherals require to be clocked to function. However, clocks of all peripherals are turned off by default to reduce power consumption. Therefore, software has to enable the clock of the a peripheral or a GPIO port if a peripheral or a GPIO pin is used.

Figure 3 shows the clock tree of STM32F4xC, the processor used in the drone controller board. The clock sources in the domain of Advanced High-performance Bus (AHB), low-speed Advanced Peripheral Bus 1 (APB1) and high-speed Advanced Peripheral Bus 2 (APB2) can be switched on or off independently when it is not used. Software can select various clock sources and scaling factors to achieve desired clock speed, depending on the application’s needs.

[image:]
[bookmark: _Ref10572734]Figure 3. Clock tree of the microcontroller (STM32F401xC). The red lines are programmed by software shown later.
The software provided in this lab uses the 16MHz HSE as the input to the PLL clock. Appropriate scaling factors have been selected to achieve the clock speed (84 MHz). See the function void System_Clock_Init() for details.

	void System_Clock_Init(void){
 ...
		
 // Enable the Internal High Speed oscillator (HSI)
 RCC->CR |= RCC_CR_HSEON;
 while((RCC->CR & RCC_CR_HSERDY) == 0);

 RCC->CR &= ~RCC_CR_PLLON;
 while((RCC->CR & RCC_CR_PLLRDY) == RCC_CR_PLLRDY);
	
 // Select clock source to PLL
 RCC->PLLCFGR &= ~RCC_PLLCFGR_PLLSRC;
 RCC->PLLCFGR |= RCC_PLLCFGR_PLLSRC_HSE; // 00 = No clock, 01 = MSI, 10 = HSI, 11 = HSE
	
 // Make PLL as 84 MHz
 // f(VCO clock) = f(PLL clock input) * (PLLN / PLLM) = 16MHz * 336/16 = 168 MHz
 // f(PLL_R) = f(VCO clock) / PLLR = 168MHz/2 = 84MHz
 RCC->PLLCFGR = (RCC->PLLCFGR & ~RCC_PLLCFGR_PLLN) | 336U << 6;
 RCC->PLLCFGR = (RCC->PLLCFGR & ~RCC_PLLCFGR_PLLM) | 16U << 0;
 RCC->PLLCFGR = (RCC->PLLCFGR & ~RCC_PLLCFGR_PLLQ) | 7U << 24;
 RCC->PLLCFGR &= ~RCC_PLLCFGR_PLLP; // 00: PLLP = 2, 01: PLLP = 4, 10: PLLP = 6, 11: PLLP = 8
 RCC->CR |= RCC_CR_PLLON;
 while((RCC->CR & RCC_CR_PLLRDY) == 0);
	
 // Select PLL selected as system clock
 RCC->CFGR &= ~RCC_CFGR_SW;
 RCC->CFGR |= RCC_CFGR_SW_PLL; // 00: MSI, 01:HSI, 10: HSE, 11: PLL
	
 // Wait until System Clock has been selected
 while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL);
}

Example 1. Setting the clock

Timer PWM Output
Timers are special hardware components that provide accurate timestamps, time-interval measurements, and timer-related periodic events for both hardware and software. This lab presents one example use of timers: generating output waveforms (output compare and PWM).

The timing information are controlled by three key registers:
· Counter Register (TIMx_CNT)
· Prescaler Register (TIMx_PSC)
· Auto-Reload Register (TIMx_ARR)

Read the following two chapters to find out how to generate PWM outputs.
· Chapter 15 General-purpose Timers of the Textbook
· Chapter 13 of the STM32F401xC reference manual

[image:]
Figure 4. General-purpose timer block diagram (coped from the STM32F401xC reference manual).
[bookmark: _sn32k3fwwtpz]

Lab 1: Pre-Lab Assignment

Student Name: _______________________________

(Note: For both this assignment and future ones, please refer to this document for information regarding the mapping of register values to their associated settings.)

1. Complete the following table to configure the PWM output for Channel 1 of Timer 4 with the following settings:
Upcounting mode, edge-aligned mode, 1:1 clock division, an auto-reload value of 1999, a prescaler value of 84, update generation enabled, slave mode disabled, internal trigger 0 selected, TRGO reset mode, ETR noninverted, external clock mode 2 disabled, external trigger prescaler disabled, external trigger filter disabled, output compare PWM mode 1, CC1 channel configured as output, CC1 active high, OC1 preload register enabled, OC1 fast mode disabled, CC1 output enabled.

	
Offset
	
Register
	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	
0x00
	
TIMx_CR1
	
Reserved
	CKD [1:0]
	ARPE
	CMS [1:0]
	DIR
	OPM
	URS
	UDIS
	CEN

	
	Reset value
	
	
	
	
	
	
	
	
	
	
	

	
0x04
	
TIMx_CR2
	
Reserved
	TI1S
	
MMS[2:0]
	CCDS
	
Reserved

	
	Reset value
	
	
	
	
	
	
	

	
0x08
	
TIMx_SMCR
	
Reserved
	ETP
	ECE
	ETPS [1:0]
	
ETF[3:0]
	MSM
	
TS[2:0]
	Reserved
	
SMS[2:0]

	
	Reset value
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
0x10
	
TIMx_SR
	
Reserved
	CC4OF
	CC3OF
	CC2OF
	CC1OF
	
Reserved
	TIF
	Reserved
	CC4IF
	CC3IF
	CC2IF
	CC1IF
	UIF

	
	Reset value
	
	
	
	
	
	
	
	
	
	
	
	
	

	
0x14
	
TIMx_EGR
	
Reserved
	TG
	Reserved
	CC4G
	CC3G
	CC2G
	CC1G
	UG

	
	Reset value
	
	
	
	
	
	
	
	

	

0x18
	TIMx_CCMR1
Output Compare mode
	
Reserved
	OC2CE
	
OC2M [2:0]
	OC2PE
	OC2FE
	
CC2S [1:0]
	OC1CE
	
OC1M [2:0]
	OC1PE
	OC1FE
	
CC1S [1:0]

	
	Reset value
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	TIMx_CCMR1
Input Capture mode
	
Reserved
	
IC2F[3:0]
	IC2
PSC [1:0]
	CC2S [1:0]
	
IC1F[3:0]
	IC1
PSC [1:0]
	CC1S [1:0]

	
	Reset value
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

0x20
	
TIMx_CCER
	

Reserved
	CC4NP
	Reserved
	CC4P
	CC4E
	CC3NP
	Reserved
	CC3P
	CC3E
	CC2NP
	Reserved
	CC2P
	CC2E
	CC1NP
	Reserved
	CC1P
	CC1E

	
	Reset value
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
0x28
	
TIMx_PSC
	
Reserved
	
PSC[15:0]

	
	Reset value
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Embedded Systems University of Maine

3

2. Calculating the timer registers
What is the clock frequency used to drive the timer?

Clock source: ______________________ (Select one: HSI/HSE)
Clock frequency: _________________ MHz

Motor control
Suppose the PWM signal period is 2 ms (500 Hz).

TIM4_PSC = ____________________________
TIM4_ARR = _____________________________

Calculate the value of CCR1:

Lab 1: Pulse Width Modulation and Motor Control
Instructor: Prof. Yifeng Zhu
Fall 2019
Lab Demo

Student Name: _______________________________

Lab demo:

1. Inside the indicated areas of MX_TIM4_Init() within main.c, initialize TIM4 to produce a PWM output:

a. Initialize GPIOB pin 6 to be configured as push-pull, NO PUPD, and low speed, in AF mode, using AF2. (The timer 4 PWM alternate function)

b. Configure timer 4 as done in the pre-lab assignment. Don’t forget to configure the ARR and PSC registers to produce the signal required for part 2.

2. Produce and measure a 500Hz output PWM signal on TIM4 Ch1

a. Add code to the end of the main function in main.c that sets the CCR1 register so that the output PWM signal has a duty cycle of 25%. To do this, you will also need to enable the “rc_enable_motor” and “fly_ready” flags.

b. [bookmark: _GoBack]Measure the output of TIM4 Ch1 using an oscilloscope to test that your code works correctly.

[bookmark: _gjdgxs]Lab 1: Pulse Width Modulation and Motor Control
Instructor: Prof. Yifeng Zhu
Fall 2019
Post-Lab Assignment

Suppose the 16-MHz HSE (high-speed external clock) is selected as the input clock of timer 1. Answer the following questions and show your calculation process clearly. Write your answer in README.md and submit it to gitlab.

1. To generate 1 Hz square wave with a duty cycle of 50%, how should we set up the timer? Indicate your counting mode and show the value of ARR, CRR, and PSC registers.

2. What is the smallest PWM frequency that can be generated?

image1.emf

oleObject1.bin

image2.emf
·

ARM Cortex-M4 core with DSP and FPU

·

256 Kbytes Flash

·

64 kBytes of SRAM

·

84 MHz CPU

·

48 pins

·

7 general-purpose timers and 1 advanced timer

·

2 full duplex SPI

·

3 I2C

·

3 USART

·

1 USB OTG FS

·

36 GPIOs

·

1 12-bit ADC with 10 channels

STM32F401CCU6TR

oleObject2.bin

ARM Cortex-M4 core with DSP and FPU
256 Kbytes Flash
64 kBytes of SRAM
84 MHz CPU
48 pins
7 general-purpose timers and 1 advanced timer
2 full duplex SPI
3 I2C
3 USART
1 USB OTG FS
36 GPIOs
1 12-bit ADC with 10 channels

STM32F401CCU6TR

image3.png
Watchdog
enable IWDGOLIK to independent
watchdog

TSIRC Lsl
32kHz
RTCSEL[1:0]
RTe RTCCLK
0sC32 IN LSEo JLsE &bl'e'D—y to RTC
32.768kH{
0sC32_0UT A
SYSCLK
Mco2 [i) {
. HSE_RTC
MCO1 [i o5k Peripheral
12031 Ethernet
o clock enable :D_, Ethernet
l—s
HOLK
165 MHz max. to AHB bus, core,
16MHz g:&cﬁe memory and DMA
HS RC /8 |y to Cortex System
sw thosen instead of 8-
| |usi AHB =1 FOLKContex
ree-running clod
HSE
P
SYSCLK
168 MH: Peripheral
i APEx | clock enable APBx
et PRESC _ peripheral
ik T B
HSE 16MHz 84MHz Ty _‘D_’ /:Il;’?:stlmer
oscouT & 2eMH HSE skexd
HSE (Bé =HSE * PLLN / (PLLM * PLLP)
OC_IN
PLLN =336
PLP=a
pLQ=7 ’
Corprt PH= "
Peripheral
3 PLL48CK dock enable J)— FHAE”
xN
PLL336 MALFY
12SSRC
Peripheral
PLLI2SCLK Perpheral | _:D_PS clocks
125 CKIN [
£ HETH.MILTX GLK M) Peripheral
PHY Ethernet Sockensbic -q> » MACTXCLK
25 to 50 MHz
! »//2,20] MII_RMII_SEL in SYSCFG_PMC to Ethernet MAC
Peripheral
clock enable MACRXCLK
ETH_MIL_RX_
Poripheral
clock enablé
:D » MACRMIICLK Perphersl Useis
clock enable
USB2.0 PH OTG_Hs SCL) BPi clock

i 1o 60 iy

image4.png
TIMx_ETR

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4

Internal Clock(CK_INT)

s
Stop, clear or up/down v
CK_PSC PSC CK_CNT, ENT
P prescaler - counter
TIFP1 {ﬁc" J | cen
™ ic1 i
XOR] T IC{PS
J;‘g';‘t,’::;,’:. TIFP2 iq P Prescaler P Capturelcompare 1 register
TRC ’ cca1
i cca
TI2FP1 N Ic2 IC2PS U |
T2yl bt TTiaFp2] Proscaler Captursicompare 2 register |- OC2REF|
TR04
ccal
, ceal
TISFP3 ic3 u
4}“3 e';‘g:‘d’::zf‘; TI3FP4 l P Prescaler IC3PS P Capturelcompare 3register - 2S3REF,
TRC ’ cca
I ccal
TI4FP3 P IC4 I1caps U .
doputfiers [TiaFPa B Prescaler B Coptursicompare 4register _ fOC4BEE
TRC x

>
TIMx_CLK from RCC ETRF

N

ETR — =
| iorir & prsome P putter reo
ITRO Trgger —
ITR1 ol to other timers
= comeler to ADC
ITR2
ITR3 'ﬁ':;: Reset, enable, up/dowr], count,
THF_ED controller
E——

THFPY
TI2FP2

u Autoreload register

ul

ETRF

output
control

output
control

output
control

output

